¹ ■ Instrumentation

or finding the @)(*&_&%! Subluxation!

² Objectives

- To obtain objective neurological evidence of the "Vertebral Subluxation Complex" (VSC)
- To monitor progress in patient care

₃ □ What are we looking for?

 There is a probable connection between the VSC and neurological phenomenon that we see in examinations with the instruments

⁴ Dr. Gonstead's Concept:

• His feeling was that temperature variations were due to inflammation from nerve root compression radiating heat to the skin surface

5 OR

 radiation of heat from the skin surface to the area of chronic nerve root compression

6 Newer data suggests:

- this is unlikely
 - heat on the surface only radiates to 1 1.8 mm below the skin
- · this most likely is due to some other mechanism

⁷ Other mechanisms

- Changes in heat are usually related to changes in vascularity
- Two primary mechanisms:
 - Substance P release as a result of dorsal sensory nerve stimulation
 - probably released by pain fiber terminals in the dorsal horn
 - generally result of excitation
 - Sympathetic Nervous System Activity
 - · This is the more popular theory

8 Recent research:

- Seems to show that there are preganglionic sympathetic cell bodies found at all levels of the spinal cord
 - (per Mitchell, <u>Anatomy of the ANS</u>; Randall, Cox, Alexander, Coldwater, Hertzmann: Journal of Applied Physiology)

∘ □ So, what's the big deal?

 This means all levels of the spine can be effected by SNS activity, therefore the theory can apply from Occiput to Coccyx

10 Theory:

- Recurrent meningeal nerve (sinuvertebral) innervates the capsule, PLL and annulus
- It has mixed sensory and sympathetic components
- When stimulated: may lead to
 - pain
 - thermal changes

11 Probably many factors involved

· more studies necessary

12 There aren't as many

- interconnections between intersegmental nerves supplying the thoracic spine as in the cervicals and lumbars
 - Therefore the temperature differentials may be more directly related to segmental levels in the thoracics

13 Structure of the Scope

- 2 thermal sensors
- when they are at different temperatures, voltage differential is roughly proportional to temperature differential
 - due to drifting of free electrons from the warmer to the cooler junction

14 Qualitative assessment

• the instrument can give an objective finding for the temperature variation

15 **Use**

- the SCANNING METHOD is used for bilateral temperature comparison
- Thompson uses the PATTERN METHOD
 - Nervo scope vs Thompson computer scope

¹⁶ Searching for:

- · an abrupt over and back break
- · over one segment

17 ☐ The "Break"

- the amount of break is thought to be proportional to the amount of VSC involvement
 - I.e. acute would produce large variations
 - chronic might produce smaller ones

18 When the break decreases

- interpreted to mean the aberrant physiology has decreased
- This means we can use the heat differential as one of several parameters of patient progress
 - no break, probably no subluxation

19 Segmental Levels

- how they respond to the "break"
- (page 96, fig 4.2 in Plaugher)

²⁰ The Holy Graile of subluxation?

- No, the presence of a temperature differential is not synonymous with the presence of the VSC
 - if no other subluxation findings are present, probably not the level you're looking for
 - · may be hypermobile
 - My have heat changes distal to the spine
 - · outside the range of the probes
 - · the lack of temperature findings does not absolutely rule out subluxations

21 Reliability

- Some studies say very good
- Some studies say not so good
- · Some more studies are needed

22 When do I use it?

- Every visit
 - to monitor progress
 - to know when to quit adjusting

²³ Procedure

- Probes must be perpendicular to the skin
 - produces air gaps otherwise
- ²⁴ Scan upward from about T2 to C0 (occiput)
- 25 Scan downward from about T2 to S2
- ²⁶ Glide speed
 - should not exceed .5 to 1 cm per second

²⁷ Three scans to make a finding

- If you find a temperature differential, rescan the area
 - Gonstead required 3 repeated findings to consider that level
 - If the change increases with repeated scans
 - more significant
 - Moles and scars will effect the readings
 - For a scoliosis, follow the curve

²⁸ Problems occur when:

- Uneven pressure
 - increased friction over one detector
- not enough pressure (air gaps)
 - skin should be slightly cupped around the probes
- Probes set too wide or narrow
- · Not repeating the test properly

• Wrong or inconsistent speed

²⁹ Problems (Cont'd)

- Finding local inflammations or scars
- Loose skin
- marking the wrong level
- marking the recession or backslash
- NOT CENTERED